miércoles, 23 de noviembre de 2016

Potencias

Potencia activa:
Es la potencia capaz de transformar la energía eléctrica en trabajo. Los diferentes dispositivos eléctricos existentes convierten la energía eléctrica en otras formas de energía tales como: mecánica, lumínica, térmica, química, etc. Esta potencia es, por lo tanto, la realmente consumida por los circuitos y, en consecuencia, cuando se habla de demanda eléctrica, es esta potencia la que se utiliza para determinar dicha demanda.
Se designa con la letra P y se mide en vatios -watt- (W) o kilovatios -kilowatt- (kW). De acuerdo con su expresión, la ley de Ohm y el triángulo de impedancia:
P = I V cos ϕ = I Z I cos ϕ = I^ 2 Z cos ϕ = I^ 2 R
Resultado que indica que la potencia activa se debe a los elementos resistivos.
Potencia aparente:
La potencia compleja de un circuito eléctrico de corriente alterna (cuya magnitud se conoce como potencia aparente y se identifica con la letra S), es la suma (vectorial) de la potencia que disipa dicho circuito y se transforma en calor o trabajo (conocida como potencia promedio, activa o real, que se designa con la letra P y se mide en vatios (W) y la potencia utilizada para la formación de los campos eléctrico y magnético de sus componentes, que fluctuará entre estos componentes y la fuente de energía (conocida como potencia reactiva, que se identifica con la letra Q y se mide en voltiamperios reactivos (var)). Esto significa que la potencia aparente representa la potencia total desarrollada en un circuito con impedancia Z. La relación entre todas las potencias aludidas es S 2 = P 2 + Q 2.
Esta potencia aparente (S) no es realmente la "útil", salvo cuando el factor de potencia es la unidad (cos φ=1), y señala que la red de alimentación de un circuito no solo ha de satisfacer la energía consumida por los elementos resistivos, sino que también ha de contarse con la que van a "almacenar" las bobinas y condensadores. Se mide en voltiamperios (VA), aunque para aludir a grandes cantidades de potencia aparente lo más frecuente es utilizar como unidad de medida el kilovoltiamperio (kVA).
La fórmula de la potencia aparente es: S = I V
Potencia reactiva inductiva:
Esta potencia no se consume ni se genera en el sentido estricto (el uso de los términos "potencia reactiva generada" y/o "potencia reactiva consumida" es una convención) y en circuitos lineales solo aparece cuando existen bobinas o condensadores. Por ende, es toda aquella potencia desarrollada en circuitos inductivos. Considérese el caso ideal de que un circuito pasivo contenga exclusivamente, un elemento inductivo (R = 0; Xc = 0 y Xl o) al cual se aplica una tensión senoidal de la forma U (t) = Umáx * sen w*t. En dicho caso ideal se supone a la bobina como carente de resistencia y capacidad, de modo que solo opondrá su reactancia inductiva a las variaciones de la intensidad del circuito. En dicha condición, al aplicar una tensión alterna a la bobina la onda de la intensidad de corriente correspondiente resultará con el máximo ángulo de desfasaje (90º). La onda representativa de dicho circuito es senoidal, de frecuencia doble a la de red, con su eje de simetría coincidiendo con el de abscisas, y por ende con alternancias que encierran áreas positivas y negativas de idéntico valor. La suma algebraica de dichas sumas positivas y negativas da una potencia resultante nula, fenómeno que se explica conceptualmente considerando que durante las alternancias positivas el circuito toma energía de la red para crear el campo magnético en la bobina; mientras en las alternancias negativas el circuito la devuelve, y a dicha devolución se debe la desaparición temporaria del campo magnético. Esta energía que va y vuelve de la red constantemente no produce trabajo y recibe el nombre de "energía oscilante", correspondiendo a la potencia que varía entre cero y el valor (Umáx*Imáx)/2 tanto en sentido positivo como en negativo.
Por dicha razón, para la condición indicada resulta que P = 0 y por existir como único factor de oposición la reactancia inductiva de la bobina.
Potencia reactiva capacitiva:
Es toda aquella potencia desarrollada en un circuito capacitivo. Considerando el caso ideal de que un circuito pasivo contenga únicamente un capacitor (R = 0; Xl = 0; Xc 0) al que se aplica una tensión senoidal de la forma U(t) = Umáx*sen w*t, la onda correspondiente a la corriente I, que permanentemente carga y descarga al capacitor resultará 90º adelantada en relación a la onda de tensión aplicada. Por dicha razón también en este caso el valor de la potencia posee como curva representativa a una onda senoidal de valor oscilante entre los valores cero y (Umáx*Imáx)/2 en sentido positivo y negativo.


Las alternancias de dicha onda encierran áreas positivas correspondientes a los períodos en que las placas del capacitor reciben la carga de la red; significando los períodos negativos el momento de descarga del capacitor, que es cuando se devuelve a la red la totalidad de la energía recibida. En esta potencia también la suma algebraica de las áreas positivas y negativas es nula dado que dicha áreas son de igual y opuesto valor. La potencia activa vale cero, y por existir como único factor de oposición la reactancia capacitiva del circuito la intensidad eficaz que recorre al mismo vale:
I = U X C = U 2 π f C
Siendo φ = 90º (La tensión atrasa respecto de la corriente)
En los circuitos capacitivos puros no existe potencia activa, pero si existe la potencia reactiva de carácter capacitivo que vale:
Q C = I 2 X C
Potencia de cargas reactivas e in-reactivas
Para calcular la potencia de algunos tipos de equipos que trabajan con corriente alterna, es necesario tener en cuenta también el valor del factor de potencia o coseno de phi (c o s ϕ {\disp) que poseen. En ese caso se encuentran los equipos que trabajan con carga reactiva o inductiva, es decir, aquellos aparatos que para funcionar utilizan una o más bobinas o enrollado de alambre de cobre, como ocurre, por ejemplo, con los motores eléctricos, o también con los aparatos de aire acondicionado o los tubos fluorescentes.

Las cargas reactivas o inductivas, que poseen los motores eléctricos, tienen un factor de potencia menor que “1” (generalmente su valor varía entre 0,85 y 0,98), por lo cual la eficiencia de trabajo del equipo en cuestión y de la red de suministro eléctrico disminuye cuando el factor se aleja mucho de la unidad, traduciéndose en un mayor gasto de energía y en un mayor desembolso económico.

No hay comentarios:

Publicar un comentario